の変態が独立に生じており, 圧力の増加とともにそれぞ れの変態開始温度は $\gamma \rightarrow \varepsilon$ 変態の場合は上昇し, $\varepsilon \rightarrow \alpha$ 変態の場合は低下する と考えられる. この点について は,加熱の際の変態挙動を観察することで,明らかにす ることができる. 圧力の増加とともに,加熱の際の $\alpha \rightarrow \gamma$ 変態を示す,示差熱分析曲線の吸熱を示す山は小さく なり,そして 28 kbar から $\varepsilon \rightarrow \gamma$ 変態の吸熱反応が認 められるようになり,圧力の増加とともにその山は大き くなる. このことから,冷却の際の $\varepsilon \rightarrow \alpha$ 変態はしだい に困難になり, ε 相が安定になると思われる. そして, 35.5 kbar では, Fig. 5 中に示すように $\alpha \rightarrow \gamma$ 変態が認 められるくなることから,ほぼ ε 相のみが存在すると考 えられる.

一方, M-14 試料(14·06%Mn)では M-10 試料(9·57 %Mn)より Mn 量が多いため ϵ 相がさらに安定になる. たとえば, Fig. 2 に示すように, 常圧下で M-14 試料 を 900°C×10 min 加熱してオーステナイト化後冷却す ると, $\gamma \rightarrow \epsilon$ 変態が 183°C で起こり, 175°C で $\epsilon \rightarrow \alpha$ 変 態がはじまる. しかし, 150°C / min の加熱速度で 800 °C まで加熱してオーステナイト化後, ただちに冷却す ると熱膨脹曲線からは $\epsilon \rightarrow \alpha$ 変態の膨張反応は認められ ず, $\gamma \rightarrow \epsilon$ の収縮反応のみとなる. したがつて, この試 料においては, 上記のようにオーステナイト化条件をか えることによつても、相の安定性は異なつてくる. また 圧力下においても、わずか 5 kbar の加圧で $\gamma \rightarrow \epsilon$ 変態 のみが観察され, α 相の生成は認められなかつた.

 $\gamma \to \varepsilon \infty$ 態に続いて起こる $\varepsilon \to \alpha \infty$ 態の挙動を知るた めに、前述のオーステナイト化条件をかえたときに起こ る、 $\gamma \to \varepsilon \infty$ 態と $\gamma \to \varepsilon \to \alpha \infty$ 態の示差熱分析曲線を比 較してみた.その結果、 $\varepsilon \to \alpha \infty$ 態が起こる場合は、 $\gamma \to \varepsilon \infty$ 態による発熱の山にのこぎり状の小さな発熱の山 が認められた.したがつて、M-14 試料に現われる $\varepsilon \to \alpha \infty$ 態は、発熱反応で突発的に起こるものと思われる。 しかし、この変態は発熱量が少ないために、高圧下で $\varepsilon \to \alpha \infty$ 態が生じていると思われる試料でも、高圧下の示 差熱分析曲線上に $\varepsilon \to \alpha \infty$ 態を示す変化が認められなか つたものと思われる.

Photo. 2 は、M-14 試料にあらわれる 2 つの異なつた 変態過程によつて得られる組織の電顕 写真の 1 例であ る. この写真から $\gamma \rightarrow \epsilon$ 変態のみが起こる場合の組織は (b)のようにセル状を示しており、その大きさは $\epsilon \rightarrow \alpha$ 変態が起こる場合の組織(a)の α 相の大きさとほぼ同じ であることがわかる.それで、この α 相が加熱により γ 相に変態し、それが成長する前に冷却されたので、微細 化された γ 相から変態した ϵ 相は安定となり、そのため

- (a) The specimen was cooled after austenitizing at 900°C for 10min. Both $\gamma \rightarrow \varepsilon$ and $\varepsilon \rightarrow \alpha$ transformations took place.
- (b) The specimen was cooled immediately after reached to austenitizing temperature of 800°C. Only γ→ε transformation occured.
- Photo. 2. Electron micrographs of martensite structure in M-14 (14.06%Mn) specimens austenitized at latm.

に、 $\epsilon \rightarrow \alpha$ 変態が阻止されたと考えられる.

 3.1.3 常圧下で γ→ε 変態を起す合金 (M-17, M-19 および M-23 試料) および γ 単相の合金 (M-28 試料)

常圧下で $\gamma \rightarrow \varepsilon$ 変態を起こす M-17, 19, 23 の各試 料, および γ 単相の M-28 試料で,高圧下で起こる γ こ ε 変態の変態開始温度は,圧力の増加とともに上昇す る.その結果を Fig. 6 に示す.M-19 試料についての データーも同じ傾向を示したが,煩雑になるため省略し た.その上昇度合は約 40°C/10 kbar であり,M-7, 10,14 試料において観察された結果と同程度であつた. なお,M-28 試料においては 22 kbar の加圧下で,示差 熱分析曲線に $\gamma \rightarrow \varepsilon$ 変態による発熱の山が観察され始め る.しかし,M-28 試料では $\gamma \rightarrow \varepsilon$ 変態開始温度が低く 変態量が少ないために,発熱の山は小さくて測定は困難 であつた.

Fig. 6 をみると、各圧力下で測定した $\epsilon \rightarrow \gamma$ 変態の

- 65 -

529

 A_{s} 温度と常圧下の $A_{s}^{s \to r}$ 温度はほぼ一直線上にのる.しかし、冷却時の M_{s}^{r} * 温度の場合、常圧下の M_{s} 温度 は直線上にのらない、これは、圧力下で $r \to \varepsilon$ 変態を起 こすに必要な駆動力が常圧の時のそれよりも大きくなる ためと考えられる.

3·2 γ→ε 変態の進行

3.2.1 冷却による進行

常圧下で $\gamma \to \varepsilon$ 変態のみが起こる試料を $M_{S}^{s \to \epsilon}$ からそ れより低い温度に冷却していつた場合に, $\gamma \to \varepsilon$ 変態の 進行がどうなるかを, 熱膨脹計を用いて変態による収縮 量の測定をもとにして調べた. すなわち M-17, 19, 23 の各試料を 900°C ×10 min 加熱してオーステナイト化 後, 1·25, 12·5, および 75°C / min の速度で冷却し, 冷却温度と $\gamma \to \varepsilon$ 変態の変態生成量との関係を調べた. なお, $\gamma \to \varepsilon$ および $\varepsilon \to \alpha$ の両変態を起こす M-14 試料 については, 冷却中に $\gamma \to \varepsilon$ 変態のみが起こるような処 理, すなわち, 150°C / min で 800°C に加熱し, ただ ちに冷却を行なつた後, 他の試料と同様な条件で測定し

た.変態生成量の測定に際しては、 $M_{s}^{\tau \to \epsilon}$ から室温までの収縮量とX線により定量した ϵ 相の量とが比例していることおよび γ 相と $\gamma + \epsilon$ 相の熱膨脹係数が同じであったことから、変態による収縮量と変態生成量の間に比例関係があるとして、行なつた. Fig. 7 にそれらの結果の一部として、各試料を 12.5°C / min で冷却した場合の変態生成量と冷却温度の関係を示し、M-23 試料については冷却速度をかえた場合の結果も示した. $\gamma \to \epsilon$ 変態は $M_{s}^{\tau \to \epsilon}$ 近傍で急速に進行するが、その後の冷却ではこの変態はゆるやかに進行する. そして、 $M_{s}^{\tau \to \epsilon}$ が高い試料ほど急速に変態が進行する程度が大きい. したがつて、

Fe-Mn 合金の $\gamma \rightarrow \varepsilon$ 変態は、 $\gamma \rightarrow \alpha$ 変態にも観察され ている²⁷⁾ように、まず連鎖的誘発作用* (autocatalytic effect) によつて急速に進行し、つぎに変態生成物による 分割作用**(geometrical partitioning effect of austenite) および変態歪を受けた未変態の γ 相が温度の低下ととも にゆるやかに ε 相 へと変態す る過程を とる と考えられ る.

また Fig. 7 に示した M-23 試料についての結果から わかるように、冷却速度が遅いほど ϵ 相の量が多くなつ ている.しかし、 $M_{s}^{-\infty}$ が高い試料ほどその傾向は、み られなくなる.これは、変態が急速に進行する温度域で は、等温マルテンサイト変態によつていること、あるい は変態による歪が冷却中に緩和されるためではないかと 考えられる.なお、ゆるやかに変態が進行する温度域内 で、試料を一定温度に保持しても変態の進行は観察され なかつた.

3.2.2 加圧による進行

- 66 -

ε相は、Mn を添加する場合のほか加圧することによ つても安定化され、量的にも多くなる.

Fig. 8 に,各種 Mn 量の試料について,圧力処理を行 なつたときに得られた ε 相の量と圧力 との関係 を示し た.そして,同時に、35.5 kbar の圧力下で 900°C に 加熱後冷却した場合のデーターも付記した.常圧下で ε + α 相である M-10 (9.57% Mn) および $\gamma + \varepsilon + \alpha$ 相 である M-14 (14.06% Mn) の両試料では、各圧力まで 加圧した後、圧力を除去して常圧下でX線回折により相

530

^{*} 先に生成したマルテンサイトの周囲から優先的にその後のマルテン サイトが生成する作用。

^{**} 生成したマルテンサイトによりオーステナイト結晶粒が分割される作用・